Intro. to ODEs
Quiz 11 Solutions
Instructions: Find the general solution to the following systems of linear differential equations. Give your answer in real form!
1)

$$
\begin{aligned}
& \frac{d x}{d t}=-x-8 y \\
& \frac{d y}{d t}=2 x-y
\end{aligned}
$$

The eigenvalues are $\lambda=-1 \pm 4 i$.

$$
\left|\begin{array}{cc}
-1-\lambda & -8 \\
2 & -1-\lambda
\end{array}\right|=\lambda^{2}+2 \lambda+17=(\lambda+1)^{2}+16
$$

For $\lambda=-1+4 i$, an associated eigenvector is found as follows.

$$
\left[\begin{array}{cc|c}
-1-(-1 \pm 4 i) & -8 & 0 \\
2 & -1-(-1 \pm 4 i) & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -2 i & 0 \\
0 & 0 & 0
\end{array}\right] \longrightarrow \vec{v}=\left[\begin{array}{c}
2 i \\
1
\end{array}\right]
$$

We write the solution in real form by pulling apart the complex form into real and imaginary parts.

$$
\begin{aligned}
e^{(-1+4 i) t}\left[\begin{array}{c}
2 i \\
1
\end{array}\right] & =e^{-t}(\cos (4 t)+i \sin (4 t))\left[\begin{array}{c}
2 i \\
1
\end{array}\right] \\
& =e^{-t}\left[\begin{array}{c}
-2 \sin (4 t) \\
\cos (4 t)
\end{array}\right]+i e^{-t}\left[\begin{array}{c}
2 \cos (4 t) \\
\sin (4 t)
\end{array}\right]
\end{aligned}
$$

This shows us that the general solution is

$$
\vec{x}(t)=c_{1} e^{-t}\left[\begin{array}{c}
-2 \sin (4 t) \\
\cos (4 t)
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{c}
2 \cos (4 t) \\
\sin (4 t)
\end{array}\right]
$$

Separating this into components gives us the equivalent form below.

$$
\begin{aligned}
& x(t)=-2 c_{1} e^{-t} \sin (4 t)+2 c_{2} e^{-t} \cos (4 t) \\
& y(t)=c_{1} e^{-t} \cos (4 t)+c_{2} e^{-t} \sin (4 t)
\end{aligned}
$$

2)

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+y \\
& \frac{d y}{d t}=4 x+y-4 z \\
& \frac{d z}{d t}=-x+y+3 z
\end{aligned}
$$

The eigenvalues for this matrix are $\lambda=1,2,3$.

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 0 \\
4 & 1-\lambda & -4 \\
-1 & 1 & 3-\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-4 \lambda+7\right)-4(2-\lambda)=(\lambda-1)(2-\lambda)(\lambda-3)
$$

For $\lambda=1$, we find

$$
\left[\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
4 & 0 & -4 & 0 \\
-1 & 1 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow \vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

For $\lambda=2$, we find

$$
\left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
4 & -1 & -4 & 0 \\
-1 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow \vec{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

For $\lambda=3$, we find

$$
\left[\begin{array}{ccc|c}
-1 & 1 & 0 & 0 \\
4 & -2 & -4 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow \vec{v}_{3}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]
$$

This gives us the general solution

$$
\vec{x}(t)=c_{1} e^{t}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] .
$$

The equivalent solution in component form is

$$
\begin{aligned}
& x(t)=c_{1} e^{t}+c_{2} e^{2 t}+2 c_{3} e^{3 t} \\
& y(t)=-c_{1} e^{t}+2 c_{3} e^{3 t} \\
& z(t)=c_{1} e^{t}+c_{2} e^{2 t}+c_{3} e^{3 t}
\end{aligned}
$$

